其他
TensorFlow 惊现大 bug?网友:这是逼着我们用 PyTorch 啊!
(给Python开发者加星标,提升Python技能)
来源:机器之心
诞生五年的 TensorFlow 出现大 bug,使用对应训练方式得到的模型甚至论文结果可能受到波及,然而相关 issue 提交 24 天后依然没有 TensorFlow 开发团队的处理。用户表示很失望,「怒而转用 PyTorch」。在事情发酵后,TensorFlow 团队终于回复了,表示已经在改,但对应的功能将在 2.4 版本中才能用。
for i, var in enumerate(model.trainable_variables):
print(model.trainable_variables[i].name)
gradients = tape.gradient(loss, trainable_variables)
# Whether to aggregate gradients outside of optimizer. This requires support
# of the optimizer and doesn't work with ParameterServerStrategy and
# CentralStroageStrategy.
aggregate_grads_outside_optimizer = (
optimizer._HAS_AGGREGATE_GRAD and # pylint: disable=protected-access
not isinstance(strategy.extended,
parameter_server_strategy.ParameterServerStrategyExtended))
if aggregate_grads_outside_optimizer:
# We aggregate gradients before unscaling them, in case a subclass of
# LossScaleOptimizer all-reduces in fp16. All-reducing in fp16 can only be
# done on scaled gradients, not unscaled gradients, for numeric stability.
gradients = optimizer._aggregate_gradients(zip(gradients, # pylint: disable=protected-access
trainable_variables))
if isinstance(optimizer, lso.LossScaleOptimizer):
gradients = optimizer.get_unscaled_gradients(gradients)
gradients = optimizer._clip_gradients(gradients) # pylint: disable=protected-access
if trainable_variables:
if aggregate_grads_outside_optimizer:
optimizer.apply_gradients(
zip(gradients, trainable_variables),
experimental_aggregate_gradients=False)
else:
optimizer.apply_gradients(zip(gradients, trainable_variables))
目前,TensorFlow 的情况是这样的:如果第一个参数中的所有输入来自其他 Keras 层,则当前层进入「functional api construction」模式。但是,你的第一个位置参数输入中包含 None,因此,无法触发「functional api construction」模式。
这导致该层与外部功能模型产生内联(inlined),而不是正确地被纳入外部模型。你可以更改层 API,排除掉输入中的 Nones,这样就可以解决该问题。
功能 API 的主要 cleanup/refactoring 已经大部分完成,以使功能 API 触发机制更加清晰(即使输入中出现任意符号值),并解决其他的一些 issue。但是,该功能将在 TensorFlow 2.4 版本中出现。
Git issue 显示 23 天前就有 TensorFlow 开发者承认了这个 bug 的存在,并将该 issue 指定给另一位开发者,而被指定者并没有查看这个 issue。
这就像一家食品公司 23 天就发现自己的产品中存在大肠杆菌,但是这么多天过去了他们啥都没干。
我见过很多对 TensorFlow 的抱怨,但是之前从未听到过这样的事情。
作为谷歌曾经的拥趸,现在我对它的所有产品感到厌倦。所有事情都半途而废,看不到完成的可能性,也看不到对用户的关注。
TensorFlow 真是糟糕透了。开发团队意识到 PyTorch 正在抢夺他们的用户,但他们仍和以往一样半途而废,没有将资源或 Keras 置于优先级较高的位置,因为他们内部并不使用。文档也很糟糕,是因为任何有自尊心的工程师都不想为写优秀的文档费心吗?
然而,竞争对手 PyTorch 的文档可读性就很强,PyTorch 官方甚至还提供了限时免费的权威官方教程书籍。
或许有一天谷歌也会出现一位像萨提亚 · 纳德拉那样的人物,改变谷歌的内部文化,更加关注用户和产品。而现在,谷歌只是停留在广告业务带来的收益上吃老底,这使得他们忽略了自己在几乎其他所有业务上的无能。
- EOF -
1、北大学霸出的中文教程:简单粗暴入门 TensorFlow 2.0
觉得本文对你有帮助?请分享给更多人
关注「Python开发者」加星标,提升Python技能
好文章,我在看❤️